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What is “Language Processing”?
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What is “Language Processing”?

Marr’s Levels

● Computational:
Most NLP applications (sentiment analysis, machine translation, summarization, etc)

● Algorithmic / Representational:
Some parsing, NN interpretability, computational psycholinguistics

● Implementational
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Two kinds of statistical learning naysayers
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Generative Linguists

● Poverty of the stimulus

● Language requires special innate cognitive 
biases

Multimodality Proponents
● Can’t learn meaning from form                         

(Bender & Koller, 2020)

● Need to be embodied 
         physically and socially        
 (Bisk et al., 2020)



talk tldr:
  Check your data
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Tal Linzen

Algorithmic level requires more than Language stats



The horse raced past the barn fell
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Bever, 1970, Cognition and the Development of Language



The horse which was raced past the barn fell
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Bever, 1970, Cognition and the Development of Language
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Garden paths produce a visceral response

Garden path responses exist in the tail of the response distribution
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They exist in the tail because

1) the statistics are in the tail (predictability)

      OR

2) the response is unusual (reanalysis)
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NNs can predict garden path existence
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van Schijndel & Linzen, 2018, Proc CogSci
Futrell et al., 2019, Proc NAACL

Frank & Hoeks, 2019, Proc CogSci
Davis & van Schijndel, 2020, Proc CogSci



NNs can predict garden path existence

      Look beyond garden path existence to garden path magnitude

13



14

Smith and Levy, 2013, Cognition



WikiRNN:
  Gulordava et al. (2018) LSTM
  Data: Wikipedia (80M words)

SoapRNN:
  2-layer LSTM (Same parameters as WikiRNN)
  Data: Corpus of American Soap Operas (80M words; Davies, 2011)
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Mapping probs to reading times

Reading Time Data (SPR; Prasad and Linzen, 2019)

● 80 simple sentences (fillers)
● 224 participants
● 1000 words / participant

Linear Mixed Regression

time ~ text position + word length x frequency + … + predictabilityt
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Three Garden Paths
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                 The horse raced past the barn fell

The horse which was raced past the barn fell
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Bever, 1970, Cognition and the Development of Language



The linear relationship doesn’t hold

20



Paper Conclusions

● Conversion rates are fairly similar, but all underestimate human responses

● Suggests human responses influenced by factors beyond predictability
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Talk Conclusion

● Algorithmic processing cannot be learned from Language statistics
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Computational level requires more than Language stats
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Forrest Davis

Proceedings of ACL 2020



Does our data match our goal?

Why can we not predict garden path response sizes?

Because the boggle response is not in the training data
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Ambiguous Relative Clause Attachment
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John met the agent of the rocker that is divorced



Ambiguous Relative Clause Attachment
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HIGH

LOW



Ambiguous Relative Clause Attachment
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John met the agent of the rocker that is divorced

LOW



Ambiguous Relative Clause Attachment
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John met the agent of the rocker that is divorced

HIGH



Ambiguous Relative Clause Attachment
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John met the agent of the rocker that is divorced

LOWEnglish speakers 
have a preference 
for LOW

Carreiras and Clifton, 1993;
Frazier and Clifton, 1996;
Carreiras and Clifton, 1999; 
Fernández, 2003



Ambiguous Relative Clause Attachment
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John met the agent of the rocker that is divorced

HIGHSpanish speakers 
have a preference 
for HIGH

Carreiras and Clifton, 1993;
Frazier and Clifton, 1996;
Carreiras and Clifton, 1999; 
Fernández, 2003
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Afrikaans Japanese

Arabic Norwegian

Croatian Persian

Danish Polish

Dutch B. Portuguese

English Romanian

French Russian

German Spanish

Greek Swedish

Italian Thai

Local (LOW)
Non-Local (HIGH)

Brysbaert and Mitchell, 1996



Do RNN LMs learn language attachment preferences?

● Used existing stimuli from psycholinguistics (40 sentence frames)
● Balanced for number
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1)
a) Andrew had dinner yesterday 

with the nephew of the teachers 
that was divorced.

b) Andrew had dinner yesterday 
with the nephews of the teacher 
that was divorced.
from Fernández (2003)

HIGH

LOW



RNN LMs seem to have a LOW bias
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RNN LMs seem to have a LOW bias
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p-value < 0.00001 
Bayes Factor > 100
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Do RNN LMs learn Spanish preference?
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2)
a) André cenó ayer con el sobrino 

de los maestros que estaba 
divorciado.

b) André cenó ayer con los sobrinos 
del maestro que estaba 
divorciado.

from Fernández (2003)

HIGH

LOW



Spanish Results
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Spanish Results
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p-value < 0.00001 
Bayes Factor > 100

P
er

ce
nt

 o
f L

O
W

 a
tta

ch
m

en
t



Why can’t the model learn
   Spanish attachment?
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RNN LMs can acquire HIGH or LOW bias when trained on 
synthetic data

● Synthetic data from PCFG with declarative sentences and 
sentences with the target RC construction

● 10% of training data had unambiguous RC sentences

○ Incrementing how much of that had HIGH vs LOW

● When at least 50% of RC sentences had HIGH attachment 
model preferred HIGH attachment



Comprehension signal not in raw text data
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Spanish Wikipedia (training corpus):

LOW 69% more frequent than HIGH

Spanish Newswire data:

LOW 21% more frequent than HIGH



Comprehension and Production
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producing

listening



Comprehension is a superset of Production
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Rohde et al., 2011
Kehler and Rohde, 2015
Kehler and Rohde, 2019



Conclusions
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● Language statistics reflect human production biases

● Most NLP tasks are about comprehension

● What kind of training signal is needed for comprehension?
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Thanks!

Tal Linzen Forrest Davis

C.Psyd

Cornell NLP
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