Language Statistics

won't solve

Language Processing

Marten van Schijndel Department of Linguistics, Cornell University December 3, 2021

What is "Language Processing"?

What is "Language Processing"?

Marr's Levels

• Computational:

Most NLP applications (sentiment analysis, machine translation, summarization, etc)

• Algorithmic / Representational:

Some parsing, NN interpretability, computational psycholinguistics

Implementational

Two kinds of statistical learning naysayers

Generative Linguists

- Poverty of the stimulus
- Language requires special innate cognitive biases

Multimodality Proponents

- Can't learn meaning from form (Bender & Koller, 2020)
 - Need to be embodied physically and socially (Bisk et al., 2020)

talk tldr: Check your data

Algorithmic level requires more than Language stats

Tal Linzen

COGNITIVE SCIENCE A Multidisciplinary Journal

Cognitive Science 45 (2021) e12988 © 2021 Cognitive Science Society LLC ISSN: 1551-6709 online DOI: 10.1111/cogs.12988

Single-Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty

Marten van Schijndel, PhD,^a ^o Tal Linzen, PhD^b

^aDepartment of Linguistics, Cornell University ^bDepartment of Linguistics and Center for Data Science, New York University The horse raced past the barn fell

Bever, 1970, Cognition and the Development of Language

The horse which was raced past the barn fell

Bever, 1970, Cognition and the Development of Language

Garden paths produce a visceral response

Garden path responses exist in the tail of the response distribution

They exist in the tail because

- the statistics are in the tail (predictability)
 OR
- 2) the response is unusual (reanalysis)

NNs can predict garden path existence

van Schijndel & Linzen, 2018, *Proc CogSci* Futrell et al., 2019, *Proc NAACL* Frank & Hoeks, 2019, *Proc CogSci* Davis & van Schijndel, 2020, *Proc CogSci* NNs can predict garden path *existence*

Look beyond garden path *existence* to garden path *magnitude*

Smith and Levy, 2013, Cognition

WikiRNN:

Gulordava et al. (2018) LSTM Data: Wikipedia (80M words)

SoapRNN:

2-layer LSTM (Same parameters as WikiRNN) Data: Corpus of American Soap Operas (80M words; Davies, 2011)

Mapping probs to reading times

Reading Time Data (SPR; Prasad and Linzen, 2019)

- 80 simple sentences (fillers)
- 224 participants
- 1000 words / participant

Linear Mixed Regression

time ~ text position + word length x frequency + \dots + predictability,

Smith & Levy, 2013: δ₀ = 0.53 δ₋₁ = 1.53 δ₋₂ = 0.92 δ₋₃ = 0.84

WikiRNN using Prasad & Linzen, 2019: ($\delta_0 = 0.04$) $\delta_{-1} = 1.10 \ \delta_{-2} = 0.37 \ \delta_{-3} = 0.39$

SoapRNN using Prasad & Linzen, 2019: (δ₀ = -0.04) δ₋₁ = 0.83 δ₋₂ = 0.91 δ₋₃ = 0.44

Three Garden Paths

The horse raced past the barn fell

The horse which was raced past the barn fell

Bever, 1970, Cognition and the Development of Language

The linear relationship doesn't hold

Predicted/empirical mean garden path effects

Paper Conclusions

• Conversion rates are fairly similar, but all underestimate human responses

• Suggests human responses influenced by factors beyond predictability

Talk Conclusion

• Algorithmic processing cannot be learned from Language statistics

Computational level requires more than Language stats

Forrest Davis

Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment

> Forrest Davis and Marten van Schijndel Department of Linguistics Cornell University {fd252|mv443}@cornell.edu

> > Proceedings of ACL 2020

Does our data match our goal?

Why can we not predict garden path response sizes?

Because the boggle response is not in the training data

John met the agent of the rocker that is divorced

John met the agent of the rocker that is divorced

John met the agent of the rocker that is divorced

English speakers have a preference for LOW

John met the agent of the rocker that is divorced

Carreiras and Clifton, 1993; Frazier and Clifton, 1996; Carreiras and Clifton, 1999; Fernández, 2003

Spanish speakers HIGH have a preference for HIGH

John met the agent of the rocker that is divorced

Carreiras and Clifton, 1993; Frazier and Clifton, 1996; Carreiras and Clifton, 1999; Fernández, 2003

Local (LOW) Non-Local (HIGH)

<u>Afrikaans</u>	<u>Japanese</u>
Arabic	Norwegian
<u>Croatian</u>	<u>Persian</u>
Danish	<u>Polish</u>
<u>Dutch</u>	B. Portuguese
English	Romanian
English <u>French</u>	Romanian <u>Russian</u>
English <u>French</u> <u>German</u>	Romanian <u>Russian</u> <u>Spanish</u>
English <u>French</u> <u>German</u> <u>Greek</u>	Romanian <a>Russian <a>Spanish <a>Swedish

Do RNN LMs learn language attachment preferences?

- Used existing stimuli from psycholinguistics (40 sentence frames)
- Balanced for number

1)

- a) Andrew had dinner yesterday with the <u>nephew</u> of the teachers _{нібн} that **was** divorced.
- b) Andrew had dinner yesterday with the nephews of the <u>teacher</u> that **was** divorced.

from Fernández (2003)

LOW

RNN LMs seem to have a LOW bias

RNN LMs seem to have a LOW bias

Do RNN LMs learn Spanish preference?

2)

 a) André cenó ayer con el <u>sobrino</u> de los maestros que **estaba** divorciado.

HIGH	

b) André cenó ayer con los sobrinos del <u>maestro</u> que **estaba** LOW divorciado.

from Fernández (2003)

Spanish Results

Spanish Results

Proportion of Spanish HIGH/LOW Attachment

Why can't the model learn Spanish attachment?

RNN LMs can acquire HIGH or LOW bias when trained on synthetic data

- Synthetic data from PCFG with declarative sentences and sentences with the target RC construction
- 10% of training data had unambiguous RC sentences
 - Incrementing how much of that had HIGH vs LOW
- When at least 50% of RC sentences had HIGH attachment model preferred HIGH attachment

Comprehension signal not in raw text data

<u>Spanish Wikipedia (training corpus):</u>

LOW 69% more frequent than HIGH

Spanish Newswire data:

LOW 21% more frequent than HIGH

Comprehension and Production

Comprehension is a superset of Production

Rohde et al., 2011 Kehler and Rohde, 2015 Kehler and Rohde, 2019

Conclusions

- Language statistics reflect human production biases
- Most NLP tasks are about comprehension

• What kind of training signal is needed for comprehension?

Thanks!

Forrest Davis

Slide 40

C.Psyd

Cornell NLP