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Background
Surprisal(w;) = —log P(w; | wy ... wi_1)

Surprisal reflects the contextual (im)probability of an event

Terminology: Surprisal = information content = information load = (un)predictability



Surprisal predicts linguistic disambiguation
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Surprisal predicts human behavior

Speake

Word surprisal predicts N400 amplitude during reading

Stefan L. Frank'* Leun J. Otten® Giulia Galli® Gabriella Vigliocco®

[ = 1 b i a o T ] 1n 1 1

Data f1
theorig

Vera Demberg

S} < | Synta

Using surprisal and fMRI to map the neural bases of broad and local
contextual prediction during natural language comprehension

Shohini Bhattasali and Philip Resnik
Linguistics/UMIACS
University of Maryland
College Park, MD
{shohini, resnik}@umd.edu

{vera, asayeed,philipg,nikolaos}@coli.uni-saarland.de




But how does surprisal influence behavior?
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The horse raced past the barn fell

Bever, 1970, Cognition and the Development of Language



The horse which was raced past the barn fell

Bever, 1970, Cognition and the Development of Language
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Theorized disambiguation mechanisms

H1: Serial tree surgery
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Theorized disambiguation mechanisms
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Theorized disambiguation mechanisms

H2: Parallel reranking
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Theorized disambiguation mechanisms

H2: Parallel reranking
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Theorized disambiguation mechanisms
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NNs can predict garden path existence

van Schijndel & Linzen, 2018, Proc CogSci
Futrell et al., 2019, Proc NAACL

Frank & Hoeks, 2019, Proc CogSci

Davis & van Schijndel, 2020, Proc CogSci
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NNs can predict garden path existence

Look beyond garden path existence to garden path magnitude
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Surprisal is linearly related to reading times!

Effect of P(word, |context) on reading time measured at...
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RT(w;) = 80S(w;) + 6_1S(wi_q) + 6-25(w;_5) + d_3S(w;_3) 5



WikiRNN:
Gulordava et al. (2018) LSTM
Data: Wikipedia (80M words)

SoapRNN:
2-layer LSTM (Same parameters as WikiRNN)
Data: Corpus of American Soap Operas (80M words; Davies, 2011)
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Mapping probs to reading times

Reading Time Data (SPR; Prasad and Linzen, 2019)

e 80 simple sentences (fillers)
e 224 participants
e 1000 words / participant

Linear Mixed Regression

time ~ text position + word length x frequency + ... + predictability,
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Smith & Levy, 2013:
00 — 053 0q=1530-3=0.920 3= 0.84

WIKkIRNN using Prasad & Linzen, 2019:
(6o =0.04) 6_1=1.10 6_» = 0.37 6_3 = 0.39

SoapRNN using Prasad & Linzen, 2019:
(6o = —0.04) 6_1 =0.83 6_, = 0.910_3 = 0.44
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Three Garden Paths

NP/S: The woman saw {

the doctor wore a hat.

that the doctor wore a hat.
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Three Garden Paths

the doctor wore a hat.

NP/S: The woman saw
that the doctor wore a hat.

isited her nephew laughed loudly.
NP/Z: When the woman {VISI © phew tausg —

raced past the barn fell.

MV/RR: The horse
which was raced past the barn fell.

visited, her nephew laughed loudly.
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The horse raced past the barn|fell

The horse which was raced past the barn|fell

Bever, 1970, Cognition and the Development of Language
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NNs have human-like garden path interpretations

RNN garden path part-of-speech predictions
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NNs have human-like garden path interpretations

RNN garden path part-of-speech predictions
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Surprisal is unable to predict effect magnitude

Predicted/empirical mean garden path effects
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Surprisal is unable to predict effect magnitude

Predicted/empirical mean garden path effects
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Each construction produces different behavior

Predicted/empirical word-by-word garden path effects
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Each construction produces different behavior

Predicted/empirical word-by-word garden path effects
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Paper Conclusions

e Neural networks capture expected garden path interpretations
e Conversion rates are fairly similar, but all underestimate human responses
e Different garden paths exhibit different timecourses

e Suggests human responses influenced by factors beyond predictability
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Deb Bhattacharya

Code-switching in online posts reveals evidence for audience design
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What is code-switching

Matrix Language Embedded Language

21 4 & \availéble@
= iil available A

The summer rental is still available.
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Surprisal influences code-switching

Surprising continuations are more likely to be code-switched

Why would this be?

Myslin and Levy, 2015, Language
Calvillo et al., 2020, EMNLP ,,



Hypothesized mechanisms for surprisal influence

H1: Speaker-driven code-switching
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Hypothesized mechanisms for surprisal influence

H2: Audience-driven code-switching
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Hypothesized mechanisms for surprisal influence

H1: Speaker-driven code-switching

Prediction: English surprisal < Chinese surprisal

H2: Audience-driven code-switching

Prediction: Chinese surprisal < English surprisal
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Code-switching data

28 FHEM & available M o

summer short-rental still available excl.
The summer rental is still available.
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Code-switching data

(1) CS:

(2) CS:

28 FHEM 1A available M -

summer short-rental still available excl.
The summer rental is still available.

== I i i BZEH M.

summer short-rental still available excl.
The summer rental is still available.

(3) Non-CS:

e H RE &E-
nearby has many restaurant.
There are many restaurants nearby.

Key:
CS-1
Non-CS
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Surprisal

Replication: Surprisal is correlated with code-switching

Unigram surprisal (frequency), 5-gram surprisal: Chinese Wikipedia (35 million tokens)

15 20 25 30

10

Non-CS

Non-CS CS1

[
CS CS1

Factor coef std err t

Intercept 0.5223 0.006 94.419
POS=verb 0.0048 0.010 0.481
POS=other -0.0609 0.009 -6.852

Frequency 0.8935 0.007 119.696
Word length  -0.0431 0.008 -5.716
Sentence length 0.0460 0.007  6.660
Surprisal 0.0605 0.008 7.251

Table 1: Summary of the logistic regression model for
CS1 (coded 1) versus random Non-CS1 (coded 0).
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Corpus expansion

(1) Cs: 21 mEHM A available M - Key:
summer short-rental still avai CS-1
The summer rental is stilllavailable.

We
TEnglsh. 4{ B8 EH & ESH R

machine \ summer short-rental still available excl.

translations The summer rental is still available.

e H RE B Key:

(3) Non<CS:
nearby has many restaurant. CS-1

There are many restaurants nearby. Non-CS



CS1 English is more complex than monolingual English

Length of word
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CS1Eng ML Eng
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CS1 English is more complex than
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What is the relative complexity of CS1
English compared with CS1 Chinese?



CS1 English is more complex than CS1 Chinese
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Paper Conclusions

Surprisal has an audience-driven influence on code-switching

e Code-switching is correlated with high surprisal,
but code-switches tend to be more complex than monolingual speech

e Suggests speakers use code-switching to signal complexity for listeners,
rather than necessarily finding it more salient for themselves
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Talk conclusions

e Surprisal underestimates human behavioral responses
e There are additional repair mechanisms beyond re-ranking

e At areas of high surprisal, code-switching is used to signal to the audience
about the area of high complexity
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Thanks!

Tal Linzen

Deb Bhattacharya

Cornell NLP
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