Surprising Linkages

Marten van Schijndel Department of Linguistics, Cornell University April 3, 2023

Background

$$Surprisal(w_t) = -\log P(w_t \mid w_1 \dots w_{t-1})$$

Surprisal reflects the contextual (im)probability of an event

Terminology: Surprisal = information content = information load = (un)predictability

Surprisal predicts linguistic disambiguation

Surprisal predicts human behavior

But how does surprisal influence behavior?

Tal Linzen

COGNITIVE SCIENCE

A Multidisciplinary Journal

ISSN: 1551-6709 online DOI: 10.1111/cogs.12988

Single-Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty

Marten van Schijndel, PhD,^a o Tal Linzen, PhD^b

^aDepartment of Linguistics, Cornell University ^bDepartment of Linguistics and Center for Data Science, New York University The horse raced past the barn fell

The horse which was raced past the barn fell

H1: Serial tree surgery

Pritchett, 1988, Language Lewis, 1998, Reanalysis in Sentence Processing Sturt et al., 1999, J. Memory and Language

H1: Serial tree surgery

Pritchett, 1988, Language

H2: Parallel reranking

Just & Carpenter, 1992, *Psychological Review* Hale, 2001, *NAACL*

Levy, 2013, Sentence Processing

H2: Parallel reranking

Just & Carpenter, 1992, *Psychological Review* Hale, 2001, *NAACL* Levy, 2013, *Sentence Processing*

H2: Parallel reranking

Just & Carpenter, 1992, *Psychological Review* Hale, 2001, *NAACL* Levy, 2013, *Sentence Processing*

NNs can predict garden path existence

van Schijndel & Linzen, 2018, *Proc CogSci*Futrell et al., 2019, *Proc NAACL*Frank & Hoeks, 2019, *Proc CogSci*Davis & van Schijndel, 2020, *Proc CogSci*

NNs can predict garden path existence

Look beyond garden path *existence* to garden path *magnitude*

Surprisal is linearly related to reading times!

Surprisal is linearly related to reading times!

$$RT(w_i) = \delta_0 S(w_i) + \delta_{-1} S(w_{i-1}) + \delta_{-2} S(w_{i-2}) + \delta_{-3} S(w_{i-3})$$

Smith and Levy, 2013, Cognition

WikiRNN:

Gulordava et al. (2018) LSTM

Data: Wikipedia (80M words)

SoapRNN:

2-layer LSTM (Same parameters as WikiRNN)

Data: Corpus of American Soap Operas (80M words; Davies, 2011)

Mapping probs to reading times

Reading Time Data (SPR; Prasad and Linzen, 2019)

- 80 simple sentences (fillers)
- 224 participants
- 1000 words / participant

Linear Mixed Regression

time ~ text position + word length x frequency + ... + predictability,

Smith & Levy, 2013:

$$\delta_0 = 0.53 \ \delta_{-1} = 1.53 \ \delta_{-2} = 0.92 \ \delta_{-3} = 0.84$$

WikiRNN using Prasad & Linzen, 2019:

$$(\delta_0 = 0.04) \ \delta_{-1} = 1.10 \ \delta_{-2} = 0.37 \ \delta_{-3} = 0.39$$

SoapRNN using Prasad & Linzen, 2019:

$$(\delta_0 = -0.04) \ \delta_{-1} = 0.83 \ \delta_{-2} = 0.91 \ \delta_{-3} = 0.44$$

Three Garden Paths

NP/S: The woman saw $\begin{cases} \text{the doctor wore a hat.} \\ \text{that the doctor wore a hat.} \end{cases}$

Three Garden Paths

```
NP/S: The woman saw \begin{cases} \text{the doctor wore a hat.} \\ \text{that the doctor wore a hat.} \end{cases}
NP/Z: When the woman \begin{cases} \text{visited her nephew laughed loudly.} \\ \text{visited, her nephew laughed loudly.} \end{cases}
MV/RR: The horse \begin{cases} \text{raced past the barn fell.} \\ \text{which was raced past the barn fell.} \end{cases}
```

The horse raced past the barn fell

The horse which was raced past the barn fell

NNs have human-like garden path interpretations

RNN garden path part-of-speech predictions

NNs have human-like garden path interpretations

RNN garden path part-of-speech predictions

Surprisal is unable to predict effect magnitude

Predicted/empirical mean garden path effects

Surprisal is unable to predict effect magnitude

Predicted/empirical mean garden path effects

Each construction produces different behavior

Predicted/empirical word-by-word garden path effects

Each construction produces different behavior

Predicted/empirical word-by-word garden path effects

Paper Conclusions

- Neural networks capture expected garden path interpretations
- Conversion rates are fairly similar, but all underestimate human responses
- Different garden paths exhibit different timecourses
- Suggests human responses influenced by factors beyond predictability

Deb Bhattacharya

Code-switching in online posts reveals evidence for audience design

Debasmita Bhattacharya
Department of Computer Science
Columbia University
db3526@columbia.edu

Marten van Schijndel
Department of Linguistics
Cornell University
mv443@cornell.edu

Under Review

What is code-switching

Surprisal influences code-switching

Surprising continuations are more likely to be code-switched

Why would this be?

Hypothesized mechanisms for surprisal influence

H1: Speaker-driven code-switching

Hypothesized mechanisms for surprisal influence

H2: Audience-driven code-switching

Hypothesized mechanisms for surprisal influence

H1: Speaker-driven code-switching

Prediction: Embedded surprisal < Matrix surprisal

H2: Audience-driven code-switching

Prediction: Matrix surprisal ≤ Embedded surprisal

Code-switching data

暑期 短租 还 <u>available</u> 哦。 summer short-rental still available *excl*. The summer rental is still available.

Code-switching data

Key: (1) CS: 暑期 短和 还 available 哦。 CS-1 summer short-rental still available excl. The summer rental is still available. 还 有空的 哦。 暑期 (2) CS: 短和 summer short-rental still available excl. The summer rental is still available. Key: 附近 有 很多 餐馆。 (3) Non-CS: CS-1 nearby has many restaurant. There are many restaurants nearby. Non-CS

Replication: Surprisal is correlated with code-switching

Unigram surprisal (frequency), 5-gram surprisal: Chinese Wikipedia (35 million tokens)

Factor	coef	std err	t
Intercept	0.5223	0.006	94.419
POS=verb	0.0048	0.010	0.481
POS=other	-0.0609	0.009	-6.852
Frequency	0.8935	0.007	119.696
Word length	-0.0431	0.008	-5.716
Sentence length	0.0460	0.007	6.660
Surprisal	0.0605	0.008	7.251

Table 1: Summary of the logistic regression model for CS1 (coded 1) versus random Non-CS1 (coded 0).

Code-switching model to test our hypotheses

Corpus expansion

CS1 English is more complex than monolingual English

CS1 English is more complex than monolingual English

What is the relative complexity of CS1 English compared with CS1 Chinese?

CS1 English is more complex than CS1 Chinese

Paper Conclusions

Surprisal has an audience-driven influence on code-switching

- Code-switching is correlated with high surprisal,
 but code-switches tend to be more complex than monolingual speech
- Suggests speakers use code-switching to signal complexity for listeners, rather than necessarily finding it more salient for themselves

Talk conclusions

- Surprisal underestimates human behavioral responses
- There are additional repair mechanisms beyond re-ranking
- At areas of high surprisal, code-switching is used to signal to the audience about the area of high complexity

Thanks!

Tal Linzen

Deb Bhattacharya

C.Psyd

Cornell NLP