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Humans adapt to linguistic context

Subjects learn to expect vocabulary items and syntactic structures
(Otten & Van Berkum, 2008; Fine et al., 2013)

RRC: The soldiers warned about the dangers conducted the raid

P(RRC) =
typical
0.008→

Fine et al.
0.50

By end of experiment, subjects expected RRC more than at beginning
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Adaptation studied in NLP

• Domain adaptation (Kuhn & de Mori, 1990; McClosky, 2010)
News Model→ Biomedical Text

• Handling unknown words (Grave et al., 2015)
Learn new words from context

• Style adaptation (Jaech & Ostendorf, 2017)
Lawyer A→ Lawyer B

But can we model human adaptation?
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Our proposed model

LSTM language model (Gives prob of next word in sequence)

Base Model: Trained on Wikipedia (90M words)
(Gulordava et al., 2018)

Adaptation algorithm:

1 Test on a sentence
2 Update weights based on that sentence
3 Repeat on remaining sentences
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Experiment 1:
Does adaptation improve prediction accuracy?
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Accuracy Evaluation Measure: Perplexity

Perplexity:
How much probability mass is assigned to wrong words?

How surprised is the model by the data?
(Lower is better)
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Accuracy Evaluation Data

Test data: Natural Stories Corpus (Futrell et al., 2017)

• 10 texts (485 sentences)
• 7 Fairy Tales
• 3 Documentaries
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Accuracy Results

Natural Stories Fairy Tales Documentaries
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Experiment 2:
Are adaptive expectations human-like?
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Psycholinguistic Evaluation Measure: Surprisal

Reading times can be predicted with surprisal (Smith and Levy, 2013)

Surprisal(wi) =− log P(wi | w1..i−1)

The little girl bitten by the dog ...
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Psycholinguistic Evaluation Data: Reading Times

Test data: Natural Stories Corpus (Futrell et al., 2017)

Also contains self-paced reading times! (N = 181)

–––––––––––––––––––––––––––––
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Psycholinguistic Evaluation Data: Reading Times

Test data: Natural Stories Corpus (Futrell et al., 2017)

Also contains self-paced reading times! (N = 181)

––––––––––––––––––––––– ball.
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Psycholinguistic Evaluation

Non-adaptive surprisal is a good predictor of reading times

β̂ σ̂ t-value
Sentence position 0.3592 0.5284 0.680
Word length 6.3828 1.0034 6.361 ***
Non-adaptive surprisal 8.4480 0.6294 13.422 ***

Fixed effects of linear mixed regression
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Psycholinguistic Evaluation

Adaptive surprisal is a better predictor of reading times

β̂ σ̂ t-value
Sentence position 0.2903 0.5310 0.547
Word length 6.4266 1.0035 6.404 ***
Non-adaptive surprisal -0.8873 0.6754 -1.314
Adaptive surprisal 8.7714 0.6764 12.968 ***

Fixed effects of linear mixed regression
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Experiment 3:
Does the model adapt to vocabulary, syntax, or both?
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Generated 200 dative sentence pairs

Prepositional Object (PO):
The boy threw the ball to the dog.

Double Object (DO):
The boy threw the dog the ball.
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Dative evaluation paradigm
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Model adapts to vocabulary syntax

PO
(The boy threw a ball to the dog)

DO
(The captain mailed the student a letter)
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Our adaptive language model makes

• More accurate predictions
• More human-like predictions

than a non-adaptive language model.

• Adaptation driven by both vocabulary and syntax
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Future directions:

• How sensitive are RT results to learning rate?
• Reproduce psycholinguistic adaptation results
• Compare adaptation mechanisms using human behavioral data
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Thanks!
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Model adapts to vocabulary syntax

PO
(Vocab)

DO
(Syntax)
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