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HUMANS ADAPT TO LINGUISTIC CONTEXT

Subjects learn to expect vocabulary items and syntactic structures
(Otten & Van Berkum, 2008; Fine et al., 2013)
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HUMANS ADAPT TO LINGUISTIC CONTEXT

Subjects learn to expect vocabulary items and syntactic structures
(Otten & Van Berkum, 2008; Fine et al., 2013)

RRC: The soldiers warned about the dangers conducted the raid

typical Fine et al.
P(RRC) = 0.008 — 0.50

By end of experiment, subjects expected RRC more than at beginning
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ADAPTATION STUDIED IN NLP

e Domain adaptation (Kuhn & de Mori, 1990; McClosky, 2010)
News Model — Biomedical Text

e Handling unknown words (Grave et al,, 2015)
Learn new words from context

e Style adaptation (Jaech & Ostendorf, 2017)
Lawyer A — Lawyer B
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News Model — Biomedical Text

e Handling unknown words (Grave et al,, 2015)
Learn new words from context

e Style adaptation (Jaech & Ostendorf, 2017)
Lawyer A — Lawyer B

But can we model human adaptation?
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OUR PROPOSED MODEL

LSTM language model (Gives prob of next word in sequence)

Base Model: Trained on Wikipedia (90M words)
(Gulordava et al,, 2018)
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OUR PROPOSED MODEL

LSTM language model (Gives prob of next word in sequence)

Base Model: Trained on Wikipedia (90M words)
(Gulordava et al,, 2018)

Adaptation algorithm:

@ Test on a sentence
® Update weights based on that sentence

@® Repeat on remaining sentences
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Experiment 1:
Does adaptation improve prediction accuracy?
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ACCURACY EVALUATION MEASURE: PERPLEXITY

Perplexity:

How much probability mass is assigned to wrong words?
How surprised is the model by the data?
(Lower is better)
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ACCURACY EVALUATION DATA

Test data: Natural Stories Corpus (Futrell et al., 2017)

e 10 texts (485 sentences)

e 7 Fairy Tales
e 3 Documentaries
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ACCURACY RESULTS
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Experiment 2:
Are adaptive expectations human-like?
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PSYCHOLINGUISTIC EVALUATION MEASURE: SURPRISAL

Reading times can be predicted with surprisal (Smith and Levy, 2013)

Surprisal(w;) = — log P(w; | wy_; 1)
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PSYCHOLINGUISTIC EVALUATION MEASURE: SURPRISAL

Reading times can be predicted with surprisal (Smith and Levy, 2013)

Surprisal(w;) = — log P(w; | wy_; 1)
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PSYCHOLINGUISTIC EVALUATION DATA: READING TIMES

Test data: Natural Stories Corpus (Futrell et al., 2017)

Also contains self-paced reading times! (N = 181)
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Test data: Natural Stories Corpus (Futrell et al., 2017)

Also contains self-paced reading times! (N = 181)
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PSYCHOLINGUISTIC EVALUATION DATA: READING TIMES

Test data: Natural Stories Corpus (Futrell et al., 2017)

Also contains self-paced reading times! (N = 181)

ball.
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PSYCHOLINGUISTIC EVALUATION

Non-adaptive surprisal is a good predictor of reading times

A

I} 6 t-value
Sentence position 0.3592 05284  0.680
Word length 6.3828 1.0034 6361 ***

Non-adaptive surprisal 8.4480 0.6294 13.422 ***

Fixed effects of linear mixed regression
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PSYCHOLINGUISTIC EVALUATION

Adaptive surprisal is a better predictor of reading times

A

I3 6 t-value
Sentence position 0.2903 0.5310  0.547
Word length 6.4266 1.0035 6.404 ***
Non-adaptive surprisal -0.8873 0.6754 -1.314
Adaptive surprisal 8.7714 0.6764 12968 ***

Fixed effects of linear mixed regression
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Experiment 3:
Does the model adapt to vocabulary, syntax, or both?
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GENERATED 200 DATIVE SENTENCE PAIRS

Prepositional Object (PO):
The boy threw the ball to the dog.

Double Object (DO):
The boy threw the dog the ball.
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DATIVE EVALUATION PARADIGM

The man named
the child as his

sole heir.

Wiki
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DO
(100)
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The boy threw
the dog a hall.
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MODEL ADAPTS TO VOCABULARY AND SYNTAX
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Our adaptive language model makes

e More accurate predictions

e More human-like predictions

than a non-adaptive language model.

e Adaptation driven by both vocabulary and syntax
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Future directions:

e How sensitive are RT results to learning rate?
e Reproduce psycholinguistic adaptation results

e Compare adaptation mechanisms using human behavioral data
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Thanks!
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MODEL ADAPTS TO VOCABULARY AND SYNTAX
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