ADDRESSING SURPRISAL DEFICIENCIES IN READING TIME MODELS

Marten van Schijndel William Schuler

December 11, 2016

Department of Linguistics, The Ohio State University

• Surprisal (PCFG, N-gram) is a way to estimate text complexity

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:

Current surprisal models inadequately estimate reading complexity

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:

Current surprisal models inadequately estimate reading complexity

This work:

A simple tweak to fix the surprisal measures

The red apple that the girl ate ...

The red apple that the
$$\underset{w_1}{\text{girl}}$$
 ate ...

Reading model of 'girl': sentence position

Reading model of 'girl': sentence position, word length

The red apple that the
$$girl$$
 ate ...

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

The red apple that the girl ate ...

$$N$$
-gram-surp(girl) = $-\log P(girl \mid the)$

Surprisal: probability of observation given context

This study: n-gram and PCFG surprisal

$$PCFG$$
-surp(girl) = $-\log P(T_6 = girl \mid T_1 \dots T_5 = The \dots the)$

Cumulative N-gram Surprisal

The red apple that the girl ate \dots

The
$$\underline{\text{red}}$$
 apple that the girl ate ...

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red
$$apple$$
 that the girl ate ...

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red apple that the girl ate ...
$$\frac{1}{2}$$

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Cumu-PCFG
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$$

How well does this fix work?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

HOW WELL DOES THIS FIX WORK?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

PCFG surprisal

- Trained on WSJ 02-21 (Marcus et al., 1993)
- Computed with van Schijndel et al., (2013) parser

HOW WELL DOES THIS FIX WORK?

University College London (UCL) Corpus (Frank et al., 2013)

- 43 subjects
- reading short sentences from online novels
- frequent comprehension questions

How well does this fix work?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

HOW WELL DOES THIS FIX WORK?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

Random Factors

- All fixed factors as by-subject random slopes
- Item, subject and subject x sentence intercepts

ACCUMULATION IMPROVES N-GRAM SURPRISAL

Baseline

ACCUMULATION IMPROVES N-GRAM SURPRISAL

ACCUMULATION IMPROVES N-GRAM SURPRISAL

After adding cumulative n-gram surprisal to model:

ACCUMULATION MAY ALSO HELP PCFG SURPRISAL

After adding cumulative *n*-gram surprisal to model:

• PCFG surprisal is not useful (p > 0.05)

ACCUMULATION MAY ALSO HELP PCFG SURPRISAL

After adding cumulative *n*-gram surprisal to model:

- PCFG surprisal is not useful (p > 0.05)
- Cumulative PCFG surprisal is not useful (p > 0.05)

ACCUMULATION MAY ALSO HELP PCFG SURPRISAL

After adding cumulative *n*-gram surprisal to model:

- PCFG surprisal is not useful (p > 0.05)
- Cumulative PCFG surprisal is not useful (p > 0.05)
- † Cumulative PCFG is useful with richer grammar (p < 0.001)

What does accumulation model?

Subsequent regression

Subsequent regression

The red apple that the girl ate \dots

Subsequent regression

Subsequent regression

Subsequent regression

Parafovial processing

Parafovial processing

Parafovial processing

Prediction (entropy)

Prediction (entropy)

Prediction (entropy)

The red (apple that the girl) ate \dots

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

```
Parafovial: Th(e red apple that t)he girl ate ...
```

accumulated

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

Parafovial: Th(e red apple that t)he girl ate ...

Prediction: The red (apple that the girl) ate ...

Other accumulation mechanisms presuppose earlier accumulation

Upcoming material influences reading times

SUCCESSOR EFFECTS INFLUENCE READING TIMES

Upcoming material influences reading times

• Orthographic effects (Pynte, Kennedy, & Ducrot, 2004; Angele, Tran, & Rayner, 2013)

SUCCESSOR EFFECTS INFLUENCE READING TIMES

Upcoming material influences reading times

- Orthographic effects
 (Pynte, Kennedy, & Ducrot, 2004; Angele, Tran, & Rayner, 2013)
- Lexical effects (Kliegl et al., 2006; Li et al., 2014; Angele et al., 2015)

The red apple that the girl ate \dots

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The
$$\underline{\text{red}}$$
 apple that the girl ate ...

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red
$$apple$$
 that the girl ate ...

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red apple that the girl ate ...
$$\frac{1}{2}$$

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(
$$w, f_t, f_{t+1}$$
) = $\sum_{i=f_t}^{f_{t+1}} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Successor PCFG works

PCFG surprisal may require a richer grammar

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

Successor n-grams are most predictive for 2 future words (p < 0.001)

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

Successor n-grams are most predictive for 2 future words (p < 0.001) 6% of UCL saccades (n=3500) >2 words

• N-gram surprisal should be accumulated to predict reading times

- N-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates pre- and post-saccade

- N-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates pre- and post-saccade
 - Pre-saccade *n*-grams are limited

- *N*-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates pre- and post-saccade
 - Pre-saccade *n*-grams are limited
- PTB PCFG surprisal does not accumulate

- *N*-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates pre- and post-saccade
 - Pre-saccade *n*-grams are limited
- PTB PCFG surprisal does not accumulate
- †Richer grammars may accumulate better

THANKS! QUESTIONS?

Thanks to:

- Stefan Frank
- National Science Foundation (DGE-1343012)

UCL EFFECT SIZE REFERENCE

Model	Effect Size (ms)
Future <i>N</i> -grams	6.5*
N-grams	6.69
Cumulative GCG-PCFG [†]	8.25*
Cumulative N-grams	10.61*

N-gram model has the given effect size before adding cumu-*n*-grams.

^{*}p<0.001

CUMU-N-GRAM RESULTS

Model	N-gram vs Cumu-N-gram			
Model	β	Log-Likelihood	AIC	
Baseline		-12702	25476	
Base+Basic	0.035	-12689*	25451	
Base+Cumulative	0.055	-12683*	25440	
Base+Both		-12683*	25442	

Base random: sentpos, wlen, rlen, prevfix, 5-gram, cumu-5-gram Base fixed: sentpos, wlen, rlen, prevfix

Significance for the Base+Both model applies to improvement over the Base+Basic model.

FUTURE SURPRISAL RESULTS

Madal	Future- <i>N</i> -grams vs Future-PCFG		
Model	β	Log-Likelihood	AIC
Baseline		-12276	24642
Base+Future- <i>N</i> -grams	0.034	-12259*	24610
Base+Future-PCFG	0.025	-12266*	24624
Base+Both		–12259 *	24612

Base random: sentpos, wlen, rlen, prevfix, cumu-5-gram,

future-5-grams, future-PCFG

Base fixed: sentpos, wlen, rlen, prevfix, cumu-5-gram

Significance for the Base+Both model applies to improvement over the Base+Future-PCFG model.